
Smart Contract Microservitization

Siyuan Wang, Xuehan Zhang, Wei Yu, Kai Hu, Jian Zhu*

School of Computer Science
 Beihang University, Beijing 100191, China

e-mail: zhujian@buaa.edu.cn

Abstract—A smart contract is a computable protocol that
automatically enforces contract terms in a computer,
transforming real-world contract terms into digital promises of
the virtual world. Early smart contracts have been stuck in the
theoretical phase due to the lack of a credible execution
environment and the means to control digital assets. With the
emergence of blockchain technology, it has solved the problems
mentioned above. Smart contracts are stored on blockchain,
ensuring the credibility of contract execution through the joint
execution of contracts by the various nodes in the blockchain
network. However, the current technology of blockchain-based
smart contracts is still not mature enough and faces many major
challenges. Among them, the extensibility and performance of
smart contracts are the most important and most concerned
ones. This paper studies the extensibility and performance of
smart contracts by combining blockchain-based smart
contracts with cloud technologies to address the extensibility
and performance issues of smart contracts. Combined with
micro-service technology, a new type of smart contract
architecture is proposed, and then the key technologies in each
layer of the architecture are further studied.

Keywords- Blockchain; BaaS; Smart Contract; Micro-service

I. INTRODUCTION
Human society is moving rapidly toward the digital

society. How to transfer the economic activities in human
society from the real world to the virtual world is a huge
challenge. Faced with this huge challenge, Nick Szabo, an
expert in cryptography, proposed the concept of "Smart
Contract [1]" in 1994. He creatively proposed that "smart
contracts are computable protocols that automate the
execution of contract terms." Nick Szabo pointed out that
computer code can replace existing machinery and is able to
execute more complex digital property transactions. However,
the study of smart contracts in early age have been stuck in
theoretical research, and has no large-scale application. The
main problems can be summarized into two aspects. One is
that the smart contract lacks an effective method to controlling
the assets, and the clauses of the contract-related assets cannot
be guaranteed to be executed effectively. Second, the contract
execution environment provided by a single computer is
difficult to guarantee the terms related to these contracts can
be executed properly. With the emergence of blockchain
technology, problems above have been well solved.

However, the smart contract technology based on
blockchain is still not mature, and there are still many
problems to be solved. At present, there are two main
problems:

1) Extensibility. With the rapid development of smart
contracts, the scale of smart contract applications is gradually
expanding. Similar to the problems faced by traditional
software engineering [12], the development of smart contract
is independent of each other and difficult to combine. The
internal logic coupling of the contract is extremely high,
making it difficult to re-use and expand, resulting in high
contract development and maintenance costs.

2) Performance. Execution of a contract requires
consensus [13] of the entire network, and multiple contracts
within the same block need to be executed serially, resulting
in excessive time overhead and poor execution performance.
The performance problem of smart contracts directly limits
the application of smart contracts in scenarios with real-time
requirements.

At present, there are many related researches trying to
solve these problems, but most of them are limited by the
blockchain [2] and the smart contract technology itself, and
didn't get a good result. The cumbersome construction process
of the blockchain network prompted the emergence of BaaS
[4]. BaaS is in the PaaS [5] layer of cloud services, providing
developers with a fast blockchain development environment
and reducing the cost of blockchain deployment. The
emergence of BaaS technology provides not only a feasibility
for the combination of smart contracts and cloud technologies,
but also a new way to solve the existing problems of smart
contracts. Based on the idea of BaaS, this paper solves the
extensibility and performance issue by combining cloud
technology with smart contract technology, we name it BaaS
based smart contract. Specifically, we combine existing
blockchain architecture with microservice architecture to
solve problems faced by smart contracts.

Microservice architecture [3] is a new architectural
concept, it uses many small functional blocks with single
function and uses a modular approach to form complex
largescale applications. Each microservice uses a language
independent API to communicate with each other. The
microservice architecture brings flexibility, extensibility and
high availability to existing blockchain based smart contract
architecture. We utilize the low-coupling nature of micro-
services, and wrap some smart contract to smart contract
micro-service, and combine complex contracts from these
smart contract micro-services to solve the extensibility
problem of smart contracts. Based on the research of smart
contract microservices, we propose a contract parallel
execution model to solve the performance issue. By
implementing a smart contract service platform in the cloud,

1569

2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)

978-1-7281-7303-0/20/$31.00 ©2020 IEEE
DOI 10.1109/COMPSAC48688.2020.00-31

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on February 02,2021 at 04:19:41 UTC from IEEE Xplore. Restrictions apply.

the contract life cycle is effectively managed, providing a
complete set of services for the development and application
of blockchain-based smart contracts. Finally, with this
comprehensive service, we can achieve agile development
and efficient maintenance of smart contracts, and enrich the
application scenarios of smart contracts, so these contracts can
quickly apply in new scenarios.

II. RELATED WORK

A. Smart Contract
A smart contract is a computer contract that is digitally

concluded, verified, and executed. It allows contract
participants to conduct trusted transactions without the
participation of a trusted third party. The history of these
transactions and the status of contract execution can be
tracked. And contract execution is not reversible. Early smart
contracts have remained at the theoretical stage due to the lack
of a credible execution environment and the means to control
digital assets. Until the emergence of blockchain technology,
smart contracts began to gradually move toward the
implementation of the application. Although the design of
smart contracts [14] and blockchains are independent, the
combination of these technology ensures that the concept
originally proposed by the smart contract can be realized.

Although smart contracts are rapidly developing with the
support of the blockchain technology, the technology is still
in its infancy, and there are still many problems to be solved.
The main problems are as follows:

 The extensibility problem of smart contracts based on
blockchain. Currently, the scale of smart contracts is
rapidly expanding. Since the essence of smart
contracts is the logical code segment running on the
blockchain, it will also face the problems faced by
traditional application development, the biggest one
is extensibility. Currently smart contracts coupling is
extremely high, and there are few mutual calls
between contracts, and the reusability of contracts is
extremely low, which makes the maintenance and
update of contracts become cumbersome.

 Blockchain-based smart contract execution is
inefficient [7]. The reason is that the smart contract
execution process requires all the nodes in the
blockchain network to participate. The execution of
smart contract requires all the blockchain nodes to
load the contract code into the contract virtual
machine and reach consensus of the execution results,
resulting in excessive time overhead and inefficiency.

 Security issues based on blockchain-based smart
contracts [6]. Since the blockchain is essentially a
decentralized ledger, the smart contracts that run on it
are enforceable. Once the contract has problems, it is
difficult to rollback the execution of smart contract.
Therefore, if the contract has problems it will result in
more serious losses than the centralized system.
Currently smart contracts don’t have any valid
verification method, which can easily lead to code
security vulnerabilities. The DAO event is a typical
case of smart contract security.

B. BaaS
Cloud computing is virtualizing computing resources and

providing services. These resources can be dynamically
expanded and managed conveniently, which provides great
convenience for users to obtain computing resources. The
three mainstream cloud computing service models are IaaS
[8], PaaS, and SaaS, which abstract hardware, middleware,
and application software to improve the cloud service [9]
ecosystem. In recent years, encrypted digital currencies such
as Bitcoin [10] and Ethereum [11] have been sought after by
investors. The market value of the digital money market has
been pushed to a new level, and the underlying blockchain
technology has received extensive attention and accelerate the
development of various blockchain technologies such as
public chain and alliance chain. In 2015, giants such as
Microsoft and IBM proposed a strategy called blockchain as
a service (BaaS), combining blockchain with cloud
computing, and proposed the concept of blockchain cloud
service, which is essentially a new kind of cloud service. With
the new cloud services, developers can create, deploy, operate
and monitor blockchain services in an efficient and easy way
on the cloud service platform.

III. SMART CONTRACT MICROSERVITIZATION
METHOD

At present, the main problems of smart contracts are
extensibility and performance, and the emergence of
blockchain cloud technology provides an opportunity for the
combination of cloud technology and smart contract
technology. In order to solve the problems of smart contracts
with current cloud technologies, we have designed a smart
contract architecture based on BaaS. Specifically, we use
cloud-based micro-service technology to solve the
extensibility problem of smart contracts, and use
parallelization methods to solve contract performance
problems. This chapter first introduces the smart contract
layered architecture based on blockchain cloud, and
determines the functional and non-functional requirements of
each layer. Then we introduce the key technologies of the
smart contract micro-service method and how to use this
method to solve extensibility problem of smart contract. And
we design a smart contract parallel execution model to
improve the performance of contract execution. Finally, the
algorithm used in the smart contract microservitization and the
parallelization is described.

A. Smart Contract Architecture Based On BaaS
The smart contract layered architecture based on BaaS is

mainly divided into application layer, cloud contract layer,
blockchain cloud layer, smart contract microservice layer,
core network layer, edge layer and rights management layer
running through all levels, as shown in Fig. 1. The edge layer
mainly includes a basic storage and calculation module, a
module that receives the task dispatch from cloud. The core
network layer mainly includes data communication and
encryption modules for messages used for data transmission,
providing secure and fast communication for the smart
contract service layer and the blockchain cloud layer. The

1570

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on February 02,2021 at 04:19:41 UTC from IEEE Xplore. Restrictions apply.

blockchain cloud layer is compatible with a variety of
blockchain systems, abstract blockchain basic functions,
including internal functions such as encryption, building
blocks, consensus, nodes, and other external functions such as
transaction reception, blockchain status data query, etc. The
cloud smart contract layer is based on blockchain cloud layer,
which provides the function of basic smart contract lifecycle
management. The smart contracts microservices layer
provides contract decoupling, contract microservitization
based on blockchain clouds layer and underlying smart
contracts layer, and integrates functions such as contract
containers management, contract combinations, and contracts
parallel execution to provide efficient, scalable contract
customization. The upper application layer is based on the
lower blockchain smart contract service, and runs various
applications based on different application scenarios. The
rights management layer provides certificate authority
management, identity authentication, and privacy protection
for each layer

B. Contract Micronization
The smart contract is essentially the code that implements

the business logic. The traditional smart contract writes all its
logic in a contract; therefore, the contract is large, high
coupling and can only used for certain scenario, the reusability
and extensibility is very poor. Contract micronization is an
important method to promote the mature development of
smart contracts. How to narrow the contract logic is the first
problem facing when dealing with contract micronization. We
analyze the characteristics of the current smart contracts and
conclude that the smart contract microservices should have
the following characteristics:

 Single responsibility principle: The design of contract
microservices should satisfy the principle of object
orientation. To ensure the high reusability of contract
microservices, the logic involved by a smart contract
microservice should be single and independent.

 Low data interaction frequency: Smart contract
microservices should have little data interaction with
the state database in the current blockchain, that is, the
input and output data of the intermediate process
should be retained in the temporary environment of
the contract, and should not perform data interaction
with state database directly. Prevent synchronization
problems due to data coupling and performance
degradation caused by database read and write.

 High extensibility: After the development of the smart
contract micro-service, the service can be used simply
by exposing the service to other micro-contracts and
users. Smart contract microservices are isolated and
micro- contract collections can meet new
requirements by adding new micro-contract services
or updating existing micro-contract service.

C. Micro-Contract Packaging
Encapsulated the micronized contract service into an

executable smart contract needs to provide a closed and secure
executable environment. We use container technology to
encapsulate the contract logic into a stand-alone micro-
contract container, the structure of the environment is shown
in Fig. 2.

It mainly contains following components:
 Contract execution module. This module includes

contract language virtual machine and contract
toolkit. Contract virtual machine provides the basic
execution environment, including contract bytecode
parsing and conversion. The contract toolkit enables
efficient interaction between the micro-contract and
the blockchain, and the contract container provides
support for the interaction with the already packaged
contract.

 Contract security module. This module provides
container identity authentication and contract error
handling. Container identity authentication allows

Application(Shopping,etc)

Edge
Layer

Network
Layer

BaaS

Receive
Transaction Query StatusExternal

Cloud
Contract Layer

Smart
Contract

Micro-service

Dispatch acceptorCache Calculation Syncer

Block
generate Consensus

Encryption Node
management

Internal

Micro-contract
Container

Micro-contract
Combination

Basic
Communication

Parallel Execution

Contract generate
tool Contract

API
Contract

decoupling
Basic Mirco-

contract

Contract
deployment

Contract
microservitization

Rights
M

anagem
ent

CA
authentication

 Identity
M

anagem
en

t
 Privacy

Data Communication Data Encryption Message Definitation

Fig. 1 Smart contract layered architecture based on BaaS

1571

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on February 02,2021 at 04:19:41 UTC from IEEE Xplore. Restrictions apply.

user to authenticate the visitor when accessing the
container to ensure the safe execution of the micro-
contract in the contract container. Contract error
handling is to deal with transaction execution errors,
contract container errors, and malicious container
attack errors encountered during container execution.

 Communication module. This module supports
internal communication between contract
microservice.

 Data encryption module. This module ensures the
security of data transmission between micro-contract
containers by using digital signature.

D. Micro-Contract combination
The micro-contracts implement the logic of a single,

independent business, but the business logic in the actual
scenario is usually complex and coupled, so it is necessary to
combine micro-contracts to achieve business requirements.
We first define the transaction format based on the smart
contract microservice architecture:

From: The sender of the data or value is represented by an
address containing 20 bytes. Field name is , therefore

 or .
To: The recipient of the data or value is also represented

by an address containing 20 bytes; this field needs to be empty
for transactions which create smart contract microservices.
Field name is , therefore or .

Type: The type of transaction, which distinguishes
between ordinary transactions and smart contract
microservice call transactions, is represented by an 8-bit
binary positive integer. Field name is . Therefore ,

 represent n-digit positive integer.
Sign: The signature of the transaction, represented by a

32- byte signature; this field is used to identity the transaction
initiator. Field name is , and .

Nonce: The sender has sent the number of transactions to
prevent transaction replay attacks. Represented by a 32-bit
binary positive integer, field name is , and .

Fig. 2 Micro-contract container structure

Micro-contract
Container1

213

Transaction

Sequence

Micro-contract
Container2

Micro-contract
Container3

point

Call

From
To
Sign
...

Fig. 3 Micro-contract based transaction’s execution process

Value: The value of the transaction transfer, represented
by a 64-bit binary positive integer. Field name is and

.
Result: The execution result of the transaction, defined

using a status code, represented by an 8-bit binary positive
integer. Field name is and .

Timestamp: The timestamp of transaction, file name is
.

Data: Transaction data, if it is a creation transaction of a
smart contract microservice, is the byte stream of the contract
code. Field name is .

Sequence: The order of the micro-contracts is invoked.
After the combination contract is created, the sequence is
generated. When user call the contract, each micro-contract
logic is invoked in the sequence. Field name is and

.
Point: A contract sequence pointer that points to the

container number of the micro contract currently in use. Field
name is and .

ContainerSign: The container is signed as an identifier to
ensure that the container which the micro contract is located
is secure. Field name is and .

Therefore, a transaction can be represented by
.

As in shown in Fig. 3, a combination contract invocation
transaction is executed, it uses sequence field to identify the
call sequence of each micro-contract container. And the point
field to get the micro-contract container which is calling now,
and use it to get the transaction execution status. Since the
transaction will be executed by multiple micro-contract
container, so we use ContainerSign field to ensure the security
of execution.

IV. PARALLEL EXECUTION MODEL BASE ON
MICRO-CONTRACT

The reason why parallel execution model has a good
application effect on the existing blockchain-based smart
contracts is that current smart contract logic coupling is too
high, and contract involves many shared variables. To ensure
the security of contract execution, in most cases contract
execution is downgraded to serial execution, resulting in
extremely limited performance. The smart contract
microservices divide the existing contract logic into pieces
and encapsulate it in different contract containers. The number
of shared variables in a single contract container is greatly

1572

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on February 02,2021 at 04:19:41 UTC from IEEE Xplore. Restrictions apply.

reduced, which greatly improves the performance of the
contract execution.

To study the parallel execution model based on micro-

contract, we first analyze the Ethereum smart contract
execution model, summarizes the performance bottleneck in
its model, then we design a parallel execution model base on
micro-contract.

Compared to the Ethereum’s smart contract model, we add
two new modules. First is the transaction split module, this
module processes a set of incoming transactions and split
them into multiple groups, and within each group each
transaction won’t use any shared variable with others. Second
is parallel processing module, this module will generate
multiple threads to processing transactions in parallel base on
work load.

Fig. 4 shows the smart contract parallel execution model.
In this model, the main process of contract execution can be
divided into 7 steps:

1. Query the current transaction pool to be processed, get
the header transaction, and call its corresponding smart
contract

2. Transaction splitting module analyzes each transaction
to get information about shared variables. Then divided these
transactions into different groups, within each group, no
transaction will use same shared variables with others. Then
these transactions will send to parallel execution module.

3. The parallel execution module assigns these
transactions to worker thread.

4. Worker thread obtain contract data from the state
database, such as contract code, status information, etc.

5. Worker thread execute contract code to finish business
logic.

6. Contract execution result is written back to state
database.

7. After all the smart contracts are executed, the
blockchain system will extract a digest of state database and
then record transactions and extracted status summaries into
the blockchain.

V. EXPERIMENT

First, we will introduce the preparations required before
the experiment, including the construction of the experimental
test environment, then perform the function and efficiency
evaluation of the smart contract micro-service method; then
perform the performance comparison test on the micro-
contract-based smart contract parallel execution model.

A. Experiment environment
The test environment blockchain system needs to meet the

Byzantine fault tolerance requirement. That is, in the
environment with f error nodes, the total number of nodes
must greater than if. In this experiment, we use minimum f 1,
and the test environment have 4 nodes. In order to reduce the
interference of the communication network and other factors
to the experiment, 4 servers are deployed in the same LAN.

B. Experiment and Analysis of Smart Contract Parallel
Execution Model
First, we will demonstrate that the time cost of the

transaction split algorithm is positively linearly related to the
number of shared variables included in the transaction and the
square of the number of transactions contained in each block.
Then we compare the performance of the smart contract
parallel execution model with the serial execution model.
Table 1 shows the default values for each variable involved in
the experiment.

TABLE 1 VARIABLE DEFAULT VALUE

Type Default value
Transaction per block 2000
Transaction correlation 10%
Shared variable in one transaction 5
Thread number in parallel execution module 12

To demonstrate the time complexity formula of the
transaction split algorithm, the following experiment was
performed to assist in the subsequent improvement of the
model algorithm. We obtain its relationship with time
overhead by changing the number of shared variables
contained in each transaction.

•
•
•

Thread

Fig. 4 Micro-contract based smart contract parallel execution model

1573

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on February 02,2021 at 04:19:41 UTC from IEEE Xplore. Restrictions apply.

Fig. 5 Relation between shared variable per transaction and time

As shown in Fig. 5, it can be proved that the time cost of
processing the transaction is positively related to the number
of shared variables included in the transaction. Based on this
experiment, this paper does the same experiment on the
number of transactions included in the block and the time cost
of processing the transaction. The experimental results are
shown in Fig. 6.

Based on the current model, a serial smart contract model
is designed and compared with the parallel model. Let the two
models process the same transaction and compare their
processing time overhead. The result is shown in Fig. 7.

According to the comparison of the two models. The
results show that the parallel model can save at least 23.8% of
the time overhead (in this case each block contains 3,500
transactions), and can save up to 41.9% of the time overhead

Fig. 6 Relation between transaction per block and time

Fig. 7 Processing time for serial execution and parallel execution

(in this case each block contains 1000 transactions). By
comparing the result, this paper can finally prove that the
parallel model can effectively solve the problem of smart
contract performance, and can effectively enrich the
application scenarios of smart contracts.

VI. CONCLUSION
Aiming at the current scalability and performance

problems of smart contracts, a new smart contract fusion
architecture based on BaaS and micro-service is designed,
where we have designed a new layered architecture and key
technologies between the layers. Specifically, at the smart
contract microservice layer, the contract microservices
approach and contract parallelization techniques were
proposed to improve contract scalability and performance.
Subsequently, the design implements a blockchain cloud-
based intelligent contract service platform, integrates the
above technologies, and provides complete contract services.

ACKNOWLEDGMENT
This work was partially supported by the National Natural

Science Foundation of China under Grant 61672074, 61672075,
Project of National Key Research and Development of China under
Grant 2018YFB1402702, Funding of Ministry of Education and
China Mobile MCM20180104.

REFERENCES
[1] Clack C D, Bakshi V A, Braine L. Smart Contract Templates:

foundatio ns, design landscape and research directions[J]. 2017.
[2] Swan M. Blockchain: Blueprint for a New Economy[M]// Blockchain

: blueprint for a new economy. 2015.
[3] Familiar B. Microservice Architecture[J]. 2015.
[4] D. Blockchain as a Service for IoT[C]// IEEE International Conference

o n Internet of Things. 2017.
[5] Lawton G. Developing Software Online With Platform-as-a- Service

Technology[J]. Computer, 2008, 41(6):13-15.
[6] Arnett M. Step by Step Towards Creating a Safe Smart Contract:

Lesson s and Insights from a Cryptocurrency Lab[J]. 2016.
[7] Cook V, Painter Z, Peterson C, Dechev D. Read-Uncommitted

Transactions for Smart Contract Performance[J]. 2019.
[8] Prodan R, Ostermann S. A survey and taxonomy of infrastructure as a

se rvice and web hosting cloud providers[C]// IEEE/ACM International
Conference on Grid Computing. 2009.

[9] Tang L.J., Jing D,Zhao Y.J., Zhang L.J.. Enterprise Cloud Service
Architecture[C]. In: 2020 IEEE International Conference on Cloud
Computing.

[10] Nakamoto S. Bitcoin: A peer-to-peer electronic cash system[J]. 2008.
[11] Wood G. Ethereum: A secure decentralised generalised transaction

ledge r[J]. Ethereum project yellow paper, 2014, 151(2014): 1-32.
[12] Pressman, Roger S. Software Engineering: a Practitioners

Approach[J]. 2001.
[13] Olfatisaber R, Fax A, Murray R M. Consensus and Cooperation in

Netw orked Multi-Agent Systems[J]. Proceedings of the IEEE, 2007,
95(1):215-233.

[14] Clack C D, Bakshi V A, Braine L. Smart Contract Templates: essential
requirements and design options[J]. 2016.

453 544 649 768 922 1015
13641484

16111688

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10

Ti
m

e(
m

s)

Shared variable per transaction

64 252 555
916

1484
2090

-1000

0

1000

2000

3000

500 1000 1500 2000 2500 3000

Ti
m

e(
m

s)

Transaction per block

1642
2768

4474
5809

7566
9308

10401606
2643

3625
5109

7091

0

2000

4000

6000

8000

10000

Ti
m

e(
m

s)

Transactions per block

serial

parallel

1574

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on February 02,2021 at 04:19:41 UTC from IEEE Xplore. Restrictions apply.

